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ABSTRACT

This report contains five studies of pToblems relating to RF an_ DC

probes in plasma media with emphasis on the ionospheric plasma. The studies

are arranged in five chapters and the materi_l in each_ chapter is essentially

self-contained.

In Chapter i, the radio frequency impedance of a plasma probe is studied

for the case of a collapsed ion sheath resulting from the application of

positive DC bias; with sheath collapse theelectron density in the plasma

is approximately uniform but electrons are continually absorbed into the

metal surface of the probe. This absorption is taken into account by using

a two-sided velocity distribution function in the Boltzmann transport equation

to find the impedance of parallel plate electrodes in a warm plasma. The same

impedance formula is derived from the plasma hydrodynamic equations through

the application of a boundary condition relating electron velocity and density.

This condition is also used to solve the spherical probe impedance problem. At

zero frequency all the impedance formulas reduce to the slope of a Langmuir

probe characteristic and at zero temperature, the formulas give the familiar

cold plasma result. For finite temperatures, the absorptive boundary condition

gives an impedance with a positive real part at all frequencies, even in the

absence of collisions. Furthermore, the absorptive boundary can cause the

disappearance of the low frequency resonance which has been associated with

the "resonance probe" direct current peak.

In Chapter 2, quasi-static theory is used to obtain a formula for the

impedance of a small spherical electrode in a cold, magnetized plasma. The
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derivation allows for the presence of an ion sheath, represented by a free-

space gap between the probe and the surrounding plasma.

In Chapter 3, the problem considered is that of a narrow slot antenna in

a perfectly conducting, rigid metal plane immersed in a compressible plasma.

Expressions are derived for the far fields which consist of an electromagnetic

space wave, an electroacoustic space wave and a surface wave. The electro-

acoustic space wave radiation pattern exhibits two very sharp lobes in direc-

tions nearly broadside to the conducting plane. The electromagnetic space

wave radiation pattern has a null in the direction parallel to the conducting

plane. The surface wave carries a large fraction of the total radiated power

and thus it could contribute appreciably to the real part of the slot admit-

tance.

In Chapter 4, a study is madeof ion collection at high gas pressure by

a spherical DCprobe. It is assumedin the theoretical development that the

ion drift velocity is proportional to the electric field strength raised to

an arbitrary power. The theoretical current-voltage characteristic is used

to obtain an ion density profile for a pre-sunrise rocket shot into the lower

ionosphere. Someaspects of the theory are verified by measurementson a

spherical probe in a laboratory plasma.

In Chapter 5, suggestions are made for future experimental probe studies

which can be carried out with the help of ionospheric rockets.



vii

TABLEOFCONTENTS

I. IMPEDANCEOFA RADIOFREQUENCYPLASMAPROBEWITHANABSORPTIVE
SURFACE

i.i Introduction

1.2 Parallel Plate Electrodes

1.3 Hydrodynamic Analysis of Parallel Plates

1.4 Spherical Electrode

1.5 Numerical Calculations

1.6 Application to ResonanceProbes

1.7 Conclusions

2. IMPEDANCEOFA SPHERICALPROBEIN A MAGNETOPLASMA

2.1 Derivation of the ImpedanceFormula

3. RADIATIONFROMA SLOTANTENNAIN A COMPRESSIBLEPLASMA

3.1 Introduction

3.2 General Field Analysis

3.3 Far Field Solution

3.3.1 The Space Waves
3.3.2 The Surface Wave

3.4 Discussion of Results

4. ION COLLECTIONBYA SPHERICALDCPROBEAT HIGHPRESSURES

4.1 Introduction

4.2 A General Spherical Probe Theory

4.3 Probe Measurementsin the Ionosphere

4.3.1 Collisionless Theory
4.3.2 Validity of the Theory

Page

1

1

5

ii

14

17

21

22

23

23

28

28

28

38

38
46

49

52

52

54

60

6O
63



viii

TABLEOFCONTENTS(continued)

4.3.3 High Pressure Velocity Dependence
4.3.4 Results of Pre-Sunrise Flight 14.144 at Wallops

Island, Virginia
4.3.5 Zero Space Charge Theory

4.4 Probe Measurementsin the Laboratory

5. FUTUREIONOSPHERICPROBEEXPERIMENTS

5.1 Introduction

5.2 Experimental Techniques

5.2.1 Langmuir Probe
5.2.2 Transient Response
5.2.3 ImpedanceProbe
5.2.4 ResonanceProbe (ResonanceRectification)
5.2.5 Probe Configurations

5.3 Experimental Program

Page

65
7O

73

74

81

81

83

83
85
86
87
87

88

REFERENCES 89



ix

Figure

1.1

1,2

1.3

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.5

4.6

4.7

4.8

4.9

4.10

4.11

LIST OF ILLUSTRATIONS

The parallel plate electrodes.

Spherical probe resistance and reactance functions for

an absorptive surface (ion sheath collapsed).

Spherical probe resistance and reactance functions for

a rigid surface (ion sheath present).

The infinitely long, narrow slot in an infinite, conducting

plane.

Integration contours.

Space wave radiation patterns°

A comparison of power radiated in the three modes.

Surface wave penetration heights.

The Debye-Huckel sheilding length.

The quantity (-a 2) arising in the theory of the spherical

space-charge-limited diode.

Validity limits for the theories.

Altitude of transition from high-field to low-field ion

motion.

Measured ion current in the ionosphere.

Ion density profiles.

Electron density as measured by conical nose probe.

Electron-collection curves for a spherical probe in a

laboratory plasma.

Ion-collection curves for a spherical probe in a

laboratory plasma.

Laboratory gas discharge apparatus.

Brush cathode discharge tube with spherical probes.

Page

4

18

19

29

37

41

48

50

61

62

64

66

68

69

71

75

76

78

79



i. IMPEDANCEOFA RADIOFREQUENCYPLASMAPROBEWITHANABSORPTIVESURFACE

i.i Introduction

The small-signal impedance of a radio frequency probe in a warm

(compressible) plasma has been discussed by several authors including Hall

(1963), Fejer (1964), Wait (1964), and Balmain (1965). In these papers the

hydrodynamic equations were used and the probe surface was considered to be

essentially rigid, reflecting all particles coming into contact with it.

When applied at the probe surface, this rigid boundary condition is a crude

but sometimes useful representation for a thin ion sheath, a region of highly

nonuniform electron density whose electrostatic field repels almost all

electrons coming within a few Debye lengths of the probe surface; a much

better sheath representation results when the rigid boundary condition is

applied at the sheath edge. Unfortunately, the "sheath edge" is difficult

to define and, furthermore, the effective size of the sheath region is

difficult to determine experimentally, especially in the case of a rocket or

satellite probe in the ionosphere° As a consequence, it is difficult to

relate the measured impedance to the properties of the plasma surrounding the

probe.

The electron density can be made more nearly uniform by applying to

the probe a positive DC bias just sufficient to bring the probe potential up

to space potential, a point which can be identified approximately from an

examination of the _'DC current-voltage characteristic; this steady state con-

dition will be referred to as "sheath collapse". The sheath collapse condition

has been studied by Wasserstrom, et al. (1965) who note that there is no

potential gradient anywhere in the sheath region when the probe potential

is equal to the space potential. Under this condition they conclude that there



exists a gradient in electron density which is accompaniedby a steady

electron flux toward the probe; when co_lision_',are infrequent the electron

density gradient is small, the density at the surfaceof a spherical probe

being one-half the ambient densityo This analysis _uggests an approximate

steady state model in which the electron density is constant adjacent to

the probe°

Evidently DC bias can help to solve the nonuniform electron density

problem but also it can create new problems arising from the direct contact

between the electron gas and the metal surface of the probe. Almost all the

electrons striking the metal surface are absorbed, an effect which gives rise

to the familiar Langmuir probe current-voltage characteristic_ In fact, the

slope of the Langmuir probe characteristic has been used by Mlodnosky and

Garriott (1962) to obtain a probe impedanceformula valid at very low fr_

quencies. At higher frequencies (those approaching plasma frequency) little

is known about probe impedanceunder conditions of sheath collapse° In this

paper an attempt is made to derive an absorptive surface theory which will

give some indication of sheath collapse effects over a wide range of fre-

quencies.

In general, the problem ls that of understanding the behavior of a gas

in contact with a metal surface° Mott-Smith (1954) made the observation

that the hydrodynamic equations are inadequate to derive boundary conditions

and, instead, the distribution functions of statistical mechanics must be

utilized. Furthermore, he observed that, close to a surface, a gas would

have a velocity distribution which is discontinuous in velocity space. That

is, the particles in the gas would be subdivided into two groups, those just



emitted from the surface and those about to collide with it; the classi-

fication of any one particle would be determined by the direction of its

velocity vector. This concept was given concrete form by Lees (1959, 1965)

who proposed the use of the following "two-stream Maxwellian" distribution

F(r, w, t): if region "a" of velocity space contains the emitted particles

and region "b" contains the incident particles, then in region "a",

F(r w, t) = F (r w, t) = n (r,t) m' a ' a [2_kT (_,t) _
a

3/2 m lw- Ua(r,t)l 2
exp [ ]

2kT (r,t)
a

and in region "b"

m 372
F(r, w, t) = Fb(r , w, t) = nb(r,t ) [2 _kTb(_,t) ] exp [-

mIw-
2 kTb(_,t )

in which k is Boltzmann's constant and _ is a vector denoting the particle

velocity. The quantities na, nb, _a' %' Ta' Tb constitute ten undetermined

functions of space and time, functions which are "weighted" by arranging them

in Maxwellian form. Since the form of the distribution function is assumed,

this function is likely to be useful only in the sense of an average over

velocity space. For this reason it is appropriate to use the two-sided Max-

wellian distribution in the Boltzmann transport equation whose various moments

yield differential equations in the undetermined functions.

In general, a finite number of moment equations is sufficient to solve

any given problem. Unfortunately, there is no mathematical means of deciding

which moment equations to use; the only recourse is to make use of those
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moments whose physical interpretations are most meaningful in the problem

under consideration. In recent years the two-sided Maxwellian method has

been applied to gas flow (Liu and Lees, 1961), to heat transfer (Lees and

Liu, 1962), and to electrostatic probes (Wasserstrom, et alo, 1965).

The problem at hand is that of an electron gas in contact with a

completely absorptive surface, that is, a surface from which no particles

are emitted. If region "a" in velocity space contains the emitted particles,

then the absorptive boundary condition must be n = 0o Due to this boundary
a

condition, na and nb are likely to be the most significant of the undertermined

functions. In order to keep the analysis as simple as possible, we shall

follow Wasserstrom, et alo and set ra(r,t ) = Tb(r,t ) = T (isothermal

(r,t) = (r,t) = 0; the latter restriction does notapproximation) and Ua Ub

preclude particle flux which can still arise from the difference between n
a

and n b. This approach will be employed in the following impedance analysis

of parallel plate and spherical electrodes in a uniform, warm plasma contain-

ing mobile electrons and immobile ions. Although Ua and _ are not included

in the analysis, it is nevertheless possible that their inclusion could

affect the results appreciably.

1.2 Parallel Plate Electrodes

The parallel plate geometry shown in Figure i.i is very simple in that

only one coordinate, x, is involved. The geometry suggests a division of

velocity space into two parts determined by the sign of Wx, the x component

of electron velocity° Furthermore, for small, sinusoidal oscillations all

the quantities of interest may be separated into steady and oscillating

parts. Thus n (x,t) may be expressed as N (x) + n (x)e j_t for w > 0 and
a + + x



< 0 Consequently thenb(x,t ) maybe expressedas N (x) + n (x)eJ_t for wx

velocity distribution function F(x,w,t) takes the form f (x,w) + f(x,w)e jwt
0

in which f is Riven by
)

-mw

m 3/2 2kT
f(x,w) = f+(x,w) = n+(x) ( _.k'l' ) e w > 0J X

(I)

- mw
5/2

m 2kT
f(x,w) = f_(x,w) = n_(x) (_) e , Wx < O.

(2)

In addition, the electric field strength is entirely ill the x direction and

is given by E (x) + E(x)e jwt Under conditions of sheath collapse however
0 _

there is no steady potential gradient and E (x) = O. As mentioned in tile
0

introduction, the collapsed-sheath electron density will be assumed to be

uniform.

The zero order and first order moments of the l_oltzmann transport

equation are physically suitable for the analysis because they represent ,

respectively, conservation of particles and conservation of momentum, if

e is the electron charge magnitude, the moment equations may be expressed

as follows in terms of integrals over velocity space:

j d;j _ f dw + d-7 Wx f dw = 0

x dx w f dw + l! , f d_' - v w
X m j 0 X

./

f d_

(5)

(4)

The collisional term in (3) is zero because collisions cannot change the

number of particles per unit volume (Spitzer, 19o2). The collisional term



in (4) is obtained from the simplified model discussed by Bhatnagar, et al.

(1954). This model defines the collisional frequency between electrons

and heavy particles v which is considered here to be independent of velocity.

The integrals in (3) and (4) may be evaluated as follows using (i) and

(2):

f d_ = N = steady ambient electron density
O

(5)

f d_ = i/2(n+ + n ) = n = oscillating electron density

I" w
X

d

f dw =  /kW
'_2--ff_(n+ - n ) = F = oscillating electron flux

(7)

2 kT
w fdw= +n)x T_ (n+ _ (s)

The next approximation is that E may be represented as the gradient of a

scalar potential,

E = d_
dx

(9)

Thus _ must satisfy Poisson's equation which is

d2_ _ ne

dx 2 eo
(lO)

The two moment equations and Poisson's equation with the three unknowns

n+, n_ and ¢ now may be solved provided that four boundary conditions can



be established (four arbitrary constants arise in the solution of one

secondorder and two first order differential equations). The conditions

on the potential need no explanation, but the conditions on n+, n_ express

the idea that no electrons are emitted from the two electrode surfaces. The

boundary conditions aro

¢(-L) = - $o ' n+(-L) = O,

¢(L) = $o ' n (L) = O (ll)

It is convenient at this point to introduce the follo_¢ing set of

simplifying definitions and normalizations:

2

v Xe 2 2 WN
---- Z, U = i -jZ, _ = w. , - X
w me ,* 2

0 W

Co kT x _ g L___ = h e¢ _
_' Ne 2 - }'1) ' )'1) ' _D ' k'--F- $1 '

n + n n - n
+ + -

N - NI ' N = N2
(12)

The differential equations (3), (4) and (10) now may, be expressed as

dN 2

J \-_- x-l/2 N1 + d-'_-- = 0
(13)

"2 X-1/2 dN1 d$1 - O
J 17 U N2 + d$ - 2 de

(14)
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d2_l

= 1/2 N 1 .
dK 2

(15)

Differentiation of (14) and elimination of N 2 and _i using (13) and (15)

give the differential equation

d2N 1 _ _2 N
1

dK 2

= 0 (16)

2 -i
in which o = 1 - UX . The solution to (16) is

N I = Ae °_ + Be -°K (17)

in which A and B are arbitrary constants.

Integration of (13) and (14) now yields

N2 = - j _ (X - U) -I/2 (Ae °K - Be -°K ) + C

- = X" =- U (Ae°K Be-°K) + CK + D

(18)

(19)

in which C and D are additional arbitrary constants. The boundary conditions

permit expression of B, C and D in terms of A.

B=-A , D= 0 ,

C=A
I _j

oh e-oh _ (X - U) -I/2 eoh oh)
e - + J //7 ( + e- -J

(20)



lO

It is unnecessary to evaluate A since it cancels out in the impedance

calculation.

The input impedance of parallel plates with area S may be expressed as

Z. - 2_

in S(Jp + Jd )
x=L

(21)

in which J and Jd are respectively the particle and displacement currentP

densities given by

J = e F ,
P

(22)

Jd = - J_eo dx
(23)

After some algebraic manipulation, (21) reduces to

F
Z = 2L |

in J_e°KS L 1

(24)

in which K° = i - XU -I and is the relative permittivity of a cold plasma.

Equation (24) would be identical to the rigid boundary impedance formula

by |fall (for the collisionless case) if the term - j _ XI/2= werederived

not present. It is this term which arises from the absorptive boundary

condition and gives Z.
in

is zero.

a positive real part even when the collision frequency

It is interesting to examine some limiting cases, especially the zero

temperature and zero frequency limits. As T + 0, h ÷ = and the familiar

cold plasma impedance expression remains. In the limit as m _ 0, (24) becomes



11

_ 2L x) _ CONZin 2 ( i + %-_ )

¢oSw N

As the collision frequency v in (25) increases, the relative importance of

the absorptive boundary condition decreases. On the otller hand as v _ O

in (25), the impedance becomes

t/2_mkT
Z,

in Ne2S

which is one-half the resistance given by the formula of Mlodnosky and

Garriott (1962) at the point of sheath collapse; their formula was derived

by taking the slope of the DC Langmuir probe characteristic.

1.3 ltydrodynamic Analysis of Parallel Plates

Radio frequency plasma probes frequently have Deen analyzed using the

hydrodynamic equations in a form applicable to a plasma with constant

ambient electron density and zero steady drift velocity. In general, in

these analyses the ion sheath has been represented by the rigid boundary

condition applied at the probe surface. It is worthwhile at this point to

seek a simple, approximate modification to this theory which will give some

indication of the change in impedance whici_ occurs when the sileath is

col lapsed.

For the one-dimensional case the hydrodynamic equations are

dn

jo#nNv = - Ne I - ykT _ -_mNv

(25)

(26)

(27)

dv (2b)
:_ d--x" = - jmn
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in which v is the electron velocity and _ is the ratio of specific i_eats.

These equations may be simplified by the use of (12) together with

kT V 2 v Vl n nlm ' V N (29)

With the inclusion of (9), the hydrodyn:imic equations and Poisson's equation

may be expressed as

dv

iX-I/2 n i+ _ = l)
1 d_ (50)

j U;<

dn .
1 l

Vl + Y d_, u (31)

d_eo
?

de"

= 1/ (a2)

kquations (50), (31) and (52_ are i :¢.ntical in forl_l : (1.51, ,14) and [15};

consequently the s:>_.c procedure :aay he used in obtaining the solution of

the par:_l Ic! plate problem. All that remains is the inclusion of houndar)"

conditions which take into account the absorption of electrons at the

electrode surfaces.

The bound_ir :_nditions on potential are the same as before but t_,'o

additional conoitiotls must be found in order to complete ti_e solution of

(50), (S1) and (52); these conditions may be derived from (o) and (7).

Note that n+(-L) = 0 and that n (-L) may be eliminated from (o) and (7) to

give

F _r
r (-I0 = 2 n(-L) ". 2ran (35)
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Thus at the boundary, the oscillating electron flux is directly proportional

to the oscillating electromdensity. Within the framework of the constant-

density, drift-free hydrodynamic theory, the oscillating electron flux is

expressed as

F (x) = NV(X) (54)

Combining (33) and (34) and normalizing gives the boundary condition

in which a = (2/_) I/2

Vl(-L) : -a nl(-L)

Similarly,

(3S)

Vl(L) = a nl(L) (36)

The quantity "a" serves as an "absorption coefficient" since setting it

equal to zero is equivalent to assuming a rigid or reflecting boundary.

It should be pointed out that the electroacoustic Poynting vector is pro-

portional to n v* (Hessel, et al., 1962) and therefore the conditions (35)

and (36) indicate absorption of radio frequency power by the electrode

surfaces.

The parallel plate impedance expression may be found as before and

is given by

Z.

in

2L
(37)
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-1/2
in which _i = Y . Under isothermal conditions (y = i) (37) is

identical to (24). This does not imply that the two-sided distribution

technique and the hydrodynamic equation technique will always give the same

result in other geometries; it does suggest, however, that the results will

be similar. The value of y may be estimated from the work of Pavkovich (1964)

who concludes that, below plasma frequency, y varies regularly with frequency,

increasing from 1 at _ = 0 to 3 at m = _N; since the most pronounced

impedance effects are expected at frequencies appreciably below plasma

frequency (Fejer, 1964), the value y - i would seem to be a suitable choice

for approximate calculations.

1.4 Spherical Electrode

The single spherical electrode-is the simplest structure which exhibits

the radiation of electroacoustic waves as was demonstrated by Fejer (1964)

using the rigid boundary condition. The following analysis is similar to

Fejer's, but employs the absorptive boundary condition. If r is radial

distance and if p is the normalized distance defined by

r = p (38)
XD

then the hydrodynamic equations and Poisson's equation may be expressed as

jX-i/2nl + 12 dpd (p2 Vl) = 0 (39)
p

dnl d_l - 0 (40)
jUX-i/2vl + Y dp dp

1 d d_l

_- (p2 dT ) : nl "
p

(41)
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The probe surface is defined by r = ro, or in normalized form, 0 = Po'

thus Po is the probe radius in Debye lengths. The boundary conditions are

¢(Po) = ¢o , vI(po) = - a n l(po) ,

¢(®) = 0, Vl(= ) = nl(oO) = 0 (42)

The solution to the impedance problem follows in a manner similar to the

parallel plate solution.

From equations (39) to (41), one may derive

2 dnl 2

I d (p d_) _ a n = 0p2 dp 1 1
(43)

The solution to (43) which decays with increasing radial distance has the

form

-alp
e

n = A
1 p

(44)

in which A is an arbitrary constant. Note that the square root represented

by el must be chosen to have a positive real part. Integration results in

the expressions

-1/2 1 +_1 p -_i p B

v I = AjX ;-'772" e +
P

1

-alp
UX -I/2 -i/2 e

Ynl - ¢I = j aI (AjX alp

B

÷ i_!--)
p

+C .

(45)

(40)
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The arbitrary constants B and C may be evaluated using the boundary

conditions. Thus,

C = 0

- a
B = - AOo 2 (jX 1/2 I +alp o alp o'2 2 +--) e

a Po Po

(47)

The probe impedance may be determined in a straightforward way from

the formula

Z.

in

2(jp +4_r o Jd )
P = Po

(48)

After algebraic manipulation, the impedance expression emerges as

Zin = j_4_r ¢ K - _ (i + alp °
o o o

I

- j axl/2a12po )-1 /
J

(49)

With a - 0 the impedance is the same as that derived by Fejer (1964). As

in (24) and (37) the term containing "a" arises directly from the use of

the absorptive boundary condition. The term alp ° contributes a positive real

part to Zin when v = 0 and _ > _N; this arises from the radiation of electro-

acoustic waves.

In the limit as _ + 0 the above impedance formula reduces to

z - v )
in 2 (i +

4_roe6_ N aUPo

(50)

and for the collisionless case, it becomes
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_mkTZ. =Z
zn 2 4_ r 2Ne2

O

At zero frequency, the isothermal approximation applies and thus y = 1. The

assumption of an idealized, constant-density, drift-free steady state intro-

duces an error which may be estimated by comparing the above formula with a

corresponding one derived by Wasserstrom, et al. (1965). For small pertur-

bations about space potential they derive the impedance expression

(51)

Z. = (I + in 2)
in

4_r 2Ne2
o

(52)

The decrease in electron density near the probe to one-half its ambient

value accounts for the greater part of the difference between (51) and (52).

1.5 Numerical Calculations

The spherical electrode impedance result is used in the numerical

calculations because it includes the effects of electroacoustic radiation.

Isothermal, collisionless conditions are assumed (y = i, U = l) and the

impedance is expressed as a function of normalized frequency defined i_)

The impedance may be expressed in terms of the resistance and reactance

functions FR and F× defined such that at T = 0, FR = 0 and FX = I at aJ.l

frequencies. The impedance expressions are, for _ <__l,

(53)

_2 i- 7i L
w4_r _ Z. = j i - 'I (54)

_2o o tn 1 ,#2(1 + ..1/_-----¢-'% ) ja_'(1 - ¢2)_ i
O (;

9

1 __2
(55)
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and for _ > i,

4_r E Z. = - j
o o in

_2

_2 + j0o I _2 #_2 - i + a_ (_2 - I) _

!(56)

1

_2 JFx]1 I FR-

The functions FR and FX are shown in Figures 1.2 and 1.3 for absorptive

and rigid boundaries, respectively. The rigid boundary condition is very

limited in its applicability but it should give a useful result for a thin

ion sheath (one to two Debye lengths thick). Thus the transition from a = 0

to a = (2/_) I/2 should give at least a qualitative picture of impedance

behavior as the ion sheath is collapsed. A comparison of Figures 1.2 and

1.3 shows that the surface absorptivity has little effect at frequencies

above the plasma frequency. The most pronounced effects occur below plasma

frequency where, fortunately, the isothermal approximation is most likely

to be valid. In this frequency range, collapse of the ion sheath brings

the reactance closer to the value predicted by cold plasma theory, llowever,

sheath collapse is accompanied by the introduction of a resistive effect

which is especially important at very low frequencies. The low frequency

resonance (FX = 0) disappears with sheath collapse provided that the probe

radius is greater than approximately three Debye lengths.

(57)
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1.6 Application to Resonance Probes

The resonance probe phenomenon consists of the appearance of a peak

in the direct current to an RF probe as the frequency is varied; the sub-

ject has been reviewed thoroughly by Crawford and Mlodnosky (1964), Harp

and Crawford (1964); and by Crawford and Harp (1965). In order to determine

whether or not the absorptive boundary theory sheds any light on the

resonance probe phenomenon, one may examine the oscillating electron density

at the surface of a spherical probe for a fixed value of applied voltage•

  xl'o
'P = Po

+ jaUX-i/2po (58]

At zero collision frequency the real part in (58) goes to zero at

x-I12
0

- i. [59)

This defines a frequency Wm at which n I becomes infinite under rigid

boundary conditions (a = 0). Under non-linear conditions, it is reasonable

to expect a steady current peak at this frequency as suggested by Fejer

(1964) With an absorptive boundary (collapsed sheath), the term aUX -I/2• P
O

in (58) is of the order of unity at _m and thus the current peak must be very

effectively flattened even when the collision frequency is zero.

The resonance probe experiment normally is carried out with a small

negative bias on the probe so that only a fraction of the electrons entering

the sheath region actually reaches the probe. In such a situation (58) may
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still be meaningful provided "a" is allowed to take on somevalue inter-

mediate between 0 and (2/_) 1/2 The present purpose is not to assign a

value to "a" but rather to suggest that the surface absorption represented by

it could play an important part in determining the height and width of the

rt'<onance !_rnbe c_rrc, nt ]_e:_.

1.7 Conclusions

Impedance expressions have been derived for parallel plate and spherical

electrodes under conditions of ion sheath collapse. These expressions may be

somewhat limited in quantitative accuracy because a highly idealized steady

state was assumed and because only two undetermined functions were used in

the assumed velocity distribution. Nevertheless the absorptive surface

theory does lead to the following qualitative conclusions with respect to

the effects of ion sheath collapse:

1. 'Fhe absorption of electrons by the probe is accompanied by

the absorption of radio frequency power at all frequencies.

2. Above plasma frequency there is little change in impedance.

3. Below plasma frequency there is a significant change in the

impedance which becomes predominantly resistive as the frequency

approaches zero.

4. The spherical probe low frequency resonance (zero in reactance)

disappears for probe radii greater than about three Debye

lengths.

5. The reactance tends to approach the value predicted by cold

plasma theory. T}_is effect is especially noticeable if the

probe radius is greater than about ten Debye lengths.

6. In the "resonance probe" (or "resonance rectification") effect,

the direct current peak is flattened by surface absorption.
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2. IMPEDANCEOFA SPHERICALPROBEIN A MAGNETOPLASMA

2.1 Derivation of the Impedance Formula

In a recent paper, Balmain (1964) used quasi-static theory to compute

the impedance of a short dipole in a magnetoplasma and also discussed the

use of a scaling procedure which transforms the free space equations into

magnetoplasma equations. It will be shown here how such a scaling pro-

cedure can be used to derive an approximate, closed-form expression for

the impedance of a small, spherical probe immersed in a cold magnetoplasma.

The basic impedance formula may be set up using some results from

elementary electrostatics. The energy necessary to assemble a charge Q

on a conducting body with capacitance C is

W = _1 (_2
20

(i)

If the charge has density p and if the conductor potential is V, the

energy is also given by

W = i/p V dv

Thus the input impedance of the conducting body for slowly-varying

sinusoidal fields may be expressed as

11/. - - p Vdv
Zin j_C j_Q2

For a spherical probe, the charge p is spread in a thin layer over the

surface of the sphere. If the probe is small, the potential V may be

(2)

(s)
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approximated by the potential of a point charge of Q coulombs located at

the center of the sphere.

The potential of a point charge in a magnetoplasma may be obtained by

scaling. If primes are used to indicate free space coordinates an appro-

priate scaling is given by

x' = _o K' x, y' = _o K' y, z' = K' z (4)

The quantities K' and K
o

tensor and are given by

are the diagonal elements of the permittivity

XU X
K' = 1 K = 1

U 2 _ y2 ' o U
(s)

WN2/ 2 ell/_ain which X = _ , Y = , U = l - jZ = i - jv/_ •

The quantities _N' WH and v are respectively the electron plasma, cyclotron

and collision frequencies. Scaling of the free space point charge potential

may be carried out as follows:

V _

Q _ Q

r'
4_Co 4_ x,2 + y,2 + z,2

o

41f_

Q

_K K'x 2 + K K'y 2 + K,2 2Z
O O

(6)

The following definitions, x = r sin O cos ¢ , y = r sin O sin ¢ ,
K

2 o
z = r cos ¢ , m = 1 - K--v , make it possible to express (6) as
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v= Q

4_E rK' J 1 - m 2 sin 2 @
o V

which is the required potential of a point charge in a magnetoplasma.

In order to calculate the impedance, the charge density p must be

determined. The total charge of Q coulombs is spread in a thin layer

over the surface of the sphere which has radius R. If the actual charge

distribution is approximated by a uniform distribution, then the charge

density may be expressed as

(7)

Q 6 (r - R)
p - 4_R2

(8)

in which _ is the Dirac delta. Substitution of (7) and (8) into (3)

permits the volume integration to be carried out, giving

II

jm8_E K'R Z. =Io _sin O dOo xn [ 2 2
1 - m sin

I 2 21 in m cos @ + 1 m sin
m

Thus the impedance formula reduces to

l l+m
Z. = in

in J_E RK'm 1 m
o

in which m =
I Ko1 K' In the above expression, the logarithm must be

calculated using the formula

(9)

in w = in lwl + j arg w

in which - _ < arg w <
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The influence of an ion sheath maybe estimated by representing it as

a free space gap of thickness S separating the probe from the uniform plasma.

Thus if the probe radius is R, the radius of the sheath edge is R + So Under

these conditions the probe impedance consists of the sheath impedance in

series with the plasma impedance, the latter being approximated by (9) with

R replaced by R + S If the quantity T is defined as

i 1 + mT = -- In
2K'm 1 - m

the the probe impedancewith an ion sheath present is given by

Z. - I (2_ i _,_ . T _ i S * RT

zn jm4_eo"R R * S" jw4e_o(R + S) jw4_oR R + S
(i0)

Under lossless conditions (Z _ 0) the above formula has a positive

real part when Ko/K' is neg@tive Thls anomalous resistance has been noticed

by Kaiser (1962) and Balmain (1964) in thelr studies of dipole impedance and

it arises whenever the quasi-statzc differential equation is hyperbolic. The

impedance is entirely reactive when the differential equation is elliptic,

that is when Ko/K' is positive° Under hyperbolic conditlons the anomalous

resistance arises from the imaginary part of the logarithm whose sign must

be determined by evaluating the logarithm for a small value of Z and then

taking the limit as Z + 0,

Another probe effect of interest is the "resonance rectifzcation"

effect in whzch an RF probe exhibits a direct current peak at a frequency

which for isotropic plasmas is below the plasma frequency. It is believed
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that the peak in direct current occurs near the minimumin RF impedance.

This minimummaybe regarded as a "series resonance" due to the series

connection of a capacitive sheath region and an inductive plasma region

(refer to Crawford (1965) and Dote and Ichimiya (1965) for further discussion).

Inspection of (i0) indicates that, under lossless conditions, a series

resonance (zero in impedance) can occur if T is negative° The factor T is

dominated by K' which is negative in the frequency range

V 2 2mH < oa < oJN + oaH (li)

Thus rectified current peaks are to be expected mainly within this

frequency range.

It must be emphasized that the spherical probe model assumed is

highly idealized° In practice the fields would be distorted by the

presence of the connecting wires and the nearby reference electrode. In

addition, the sheath-plasma interface would not be spherical but would be

distorted by the magnetic field° Another important factor is the size of

the probe; its radius would have to be much larger than a Debye length to

avoid effects arising from the non-zero temperature of the plasma.
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3. RADIAFION FROU A SI,OT ANTENNA IN A COMPRESSIBLE PLASMA

3.1 Introduction

_Ieasurements of antenna impedance in a plasma medium frequently nave

revealed an apparent power loss much greater than that which could arise

from electromagnetic radiation and electron-molecule collisions within

the gas (l_almain, 19o4). A mecl_anism which might account for part of this

power loss is the generation of compressible plasma surface waves of the

type found theoretically by Seshadri (1964). Such surface waves would be

excited at the "gap" or "terminals" of the antenna and would propagate

outward along its surface. Since the surface waves are very rapidly at-

tenuated by collisions, reflections of the waves from the extremities of

tim antenna would ilave little effect on the impedance. It is the purpose

of this report to compare the power carried off by the surface waves with

ti_e power carz'icd off l)y the electromagnetic and electroacoustic space

waves whose radiation patterns will be obtained in the process. The con-

figuration to l_e stu_lied Is the infinitely long, narrow slot antenna immersed

in a co_pre_<it,le plasma.

3.2 General i:ield Analysis

The slot antenna to be studied is shown in Figure 3.1. The fields are

assumed not ,'o vary in tl_e z direction and the metal plane is assumed to be

perfectly' conducting. Furthermore, the metal plane is assumed to be rigid,

reflecting the electrons which come into contact with it; such a boundary

condition is a crude representation for a thin ion sheath, that is, one

having a thickness between about one and three Debye lengths. The slot is
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Figure 3,1 The infinitely long, narrow slot in an

infinite, conducting plane.



3O

taken to be infinitesimal in width although it is knownthat such an assump-

tion will give a field solution which is incorrect in the zero temperature

limit. As far as radiation fields are concerned, the infinitesimal slot is

an adequate representation for a slot which is small comparedto a Oebye

length.

The compressible plasma theory has been widely used in recent years,

especially following the fundamental papers of Cohen (1961, 1962). A

partial bibliography may be found in the recent paper by Balmain (1905)

which also reviews the basic equations. The usual treatment involves the

separation of all field quantities into two modes, the electroacoustic

or "p" modeand the electromagnetic or "e" mode. Tile electroacoustic mode

involves p, _ and _ which are the pressure, electric field strength andP P

velocity respectively. The electromagnetic mode involves II, E and
e e

which are the magnetic field strength, the electric field strength and the

velocity. The total fields may be expressed as

g=g +g
p e

Ci]

V=V +V

p e

m

In problems which concern infinite slots, it is known that II is

parallel to the slot (IIx = I[ = 0). Thus under source-free conditionsY

and with z derivatives zero, the basic equations reduce to

a 2 a 2 2) 2
(?-7 + + k p = 0, k 2 _ co m (U - X>

Sy2 p p 3kT

(2]

(_{)
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E
P

1 - K
0

Ne K
o

^2z)(_'_x + y _y (4)

P
J (x + y

WUKoNm 3x
(s)

_2 _2 2)-- +-- + k tt
(ax2 _y2 e z

=0, ke2 = _2_oCo(_--_ ) (o)

3H 31t
_" = -j (_ Z /x Z
e co_ K _ Y -'_X -)

o o

(7)

e _H 3H
Z Z

Ve = m2Umc K (X T - _ _ )
o o

(8)

The nomenclature is the same as used in Chapter I.

The above equations will be solved with the assistance of the Fourier

transforms given by

1 f(y) e +JYY dyf(Y) = 2
J_oo

(9)

f(Y) = I _ {(y) e -jYy dy (10)

After application of the Fourier transforms, equations (3) through (8)

becolae

,3 2 p 0 B2 =k 2 2( +'p) = , p P -Y '
3x

(11)
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P

-j (1 - Ko)

Ne K
o

/..,

(>_ 3p + y ¥) 1_ ,
1:2

(__L__ +
_x 2

V

P

1

-)

,,: ) li = 0 ,
e "

P

2 2 2
'd = k - y ,

e e

13

14

-- - 1 A .& ~

e wE K ( x ¥ y Be) li z
o o

(lS)

v -je (_¥ y fie) lie zc_2Ume K
o o

(16)

Differential equations (ii) and (14) have exponential solutions and these

solutions must decay with increasing distance from the slot. The solutions

may be expressed as follows:

-jB x

p = A e P (17)

-jB x
e

11 = B e (18)
z

in which A and B are arbitrary "constants" (functions of the translorm variable

y). Under lossy conditions (when collisions are present) and for positive

values of x, the decaying field condition requires that Bp and 6e have

negative imaginary parts. Thus Bp and 6e may be determined uniquely for use

in solutions (17) and (18). In the collisionless limit,
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= vJkp 2 2 2 2_p y for y < k-- p

= _/y2 2 2Bp -j k 2 for y > kp -- p

(19)

V]ke2 2 2 2Be = y for y < k-- e

y2 2 2Be : -j k 2 for y > k
e -- e

(20)

in which _ denotes the positive square root. It may be shown that, for

this problem, the decaying field condition gives rise to fields with outward

phase progression.

llaving determined the functional form of the solution, it is necessary

now to state the boundary conditions. Application of one volt across the

infinitesimal gap requires that at x = 0

E = Epy + Ee : 6(Y)Y Y
(21)

or, after transformation

Epy = 1I_y = + Eey 2___ . (22)

The rigidity of the boundary demands that at x = 0

v x = VPx + Vex = 0 (25)
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or after transformation,

v = vp + ve = 0
x x x

Equations (22) and (24) become, respectively,

A -j ey
coUmNK 2

o co Umc K
O O

{I - ko) y Be

-J NeK A + coc K
O O O

B = 0

1
B -

2_

(2_]

(26)

Solution of (25) and (26) yields

i
A -

2

j Ne K y
O

y2
(I-K o) + S Be p

(27)

B -

wc K_3
o o p

(1 - Ko)Y 2 + fl fl
ep

(2s)

from which the complete transformed solution may be obtained through (17),

(18), (12), (13), (15) and (16).

The inverse Fourier transformation permits expression of the pressure

and magnetic field strength in integral form.

/ _ -j(_pX + yy)
i_e k [

o ye dy
P = J 2_ ] _ D

(29)



i 8p -J (Bex +YY)

_C K e
o o dy

Hz = 2_ D

35

(30)

2

in which D = (i - Ko)q" + 8e8 p.

The remaining field quantities may be expressed similarly as integrals

or they may be derived using (4), (5), (7) and (8). In integral form they

are

f oo _p ^ Bp

-- e (_ + y Y)Y -J ( x + yy)

Vp = j 2_mUm _ D e
dy (31)

f_ _ -j ( x + yy)

_ 1 - K (_B_ + y y)y f3p .-
_ _ o ilJ e

p 2_" _ D

- e [ (£Y ^ Sp- yBe) -j (BeX + yy)

Ve = -J 2_JUmJ_ D e

-1 (_ (_Y - _e)Sp -J(BeX + Yy)

e - 2_ J _ D e

dy (32)

dy (33)

dy (34)

In the above form, the integrations are difficult to work with. They may be

made more tractable by rationaIizing the denominator, that is by multiplying

y2
numerator and denominator by (I - Ko) 8eB p. The rationalized denominator

is given by

(i - Ko) y = ( - i + (ke + k y - k k
p e p

M ¥4 2 2) y2 2 kp2]= - - (ke + k + k (35)p e

in which M = 1 - (%2
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At this point it is convenient to regard y as a complex variable;

the integrations in (29) to (34) are thus along the real axis in the y plane.

The integrand contains a numberof critical points lying in the y plane. These

are the branch points at y = + k
-- e

and y = + k together with the poles (zeros
-- p

of the rationalized denominator) at y = _ Ts and

Ys and Yo are given by

2 2
k + k
e p

2M

Y = _ Yo" The quantities

Yo I
J

Fj11.k
L (ke2

(36)

In most cases of interest

being of the order of 103 .

k >> k , the ratio of these two quantities
p e

This permits the roots in (36) to be expressed in

series form as follows:

2
k

2 _-__2_ + (37)
Ys M ......

4
2 2 (M - 1) ke

YO = k + + (38)e 2 ......
k
P

Note that the pole location Yo is very nearly coincident with the branch

point at k
0"

Due to the presence of square roots, the integrands are multiple-valued.

Since square roots arise in two quantities Bp and Be , four combinations of

roots may be chosen. Thus all the possible values of any integrand correspond

to all the points on a four-sheeted Riemann surface in the complex ¥ plane.

One of these sheets is specified by the decaying field criterion already

discussed and this sheet will be referred to as the "proper" sheet. An
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examination of the poles reveals that _ ¥s lie on the proper sheet but _ ¥o

do not. The pole and branch point locations are shown in Figure 3.2 for

frequencies above and below the plasma frequency. Figure 3.2 shows that

the poles at _ Ys will have a strong influence at all frequencies. Although

the poles at _ _o are not on the proper sheet, they are nevertheless very

close to the path of integration because of their proximity to the branch

points at _ ke; consequently these poles may influence the field solution

at_preciablv at frequencies above plasma frequency.

3.3 Far Field Solution

The far field evaluation of the integrals is carried out by the method

of steepest descents. Once a steepest descent path has been selected the

integral along this path can be related to the original integral by the

Cauctly integral theorem. Thus the far field solution in general consists

of the asymptotic approximation to the steepest descent integral plus the

residue at any pole lying between the steepest descent path and the real

axis in the y plane. The pole contribution consists of a surface wave as

found by Seshadri (1964); the steepest descent integrals contribute space

waves radiated outward from the slot. In this report the electromagnetic

and electroacoustic space waves will be examined and compared with tl_e

surface wave. The evaluation of the field integrals will not be carried

out in detail here since similar integrals have been evaluated witt_ great

care by Langelier (19o4).

3.3.1 ]'he Space Waves

In order to simplify the calculations, the space wave derivation will

be carried out under lossless conditions (U = 1). Furthermore the space
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waves propagate only at frequencies greater than the plasma frequency so

that X < i. Under these conditions the quantities k and k are positive
e p

real numbers. Integrals (29) to (34) all have the form

oo

f(y) = G(y)e-J( _x + yy) d¥

in which 82 k 2 2= - 7 and k is a positive real number. It is convenient

to transform into cylindrical coordinates at this point. The transformation

is given below:

x = p cos 8 = k cos

y = p sin y = k sin

(39)

(40]

This transformation puts (39) into the form

G cos _ d
f(y) : k G(k sin _) e-Jk_ cos (41)

for which the contour C in the E plane is sketched below:
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At tills point the method of steepest descent or the method of stationary

phase maybe used; both methods have been summarizedrecently by Jones (1964).

The saddle point (or point of stationary phase) is at _ = _ and asymptotic

evaluation of (41) along the steepest descent path yields, for large values

of p,

71

-jkp + j _-

f(y) = k cos _ 2_ G (k sin _) e
(42)

The above formula may be used to obtain far field expressions for the

electromagnetic or "e" mode by setting k = k and for the electroacoustic
e

or "p" mode by setting k = k
P

For the electroacoustic mode the pressure integral (29) becomes

Ne k

= J 2 o 1 (p ,0)P (43)

in which

k 2 sin 0 cos , 2_-_ -jkpP+J4I (p,¢) = P , e

(1- Ko) k 2 sin 2 J _ ¢ k cos ¢P ¢ + k - k 2 sin 2P P

At tile saddle point, the direction of the velocity vector v as given by
P

(31) is

A A ,_ A

x_ + y y = (x cos _ + y sin _) k
P P

= p k
P

(44)
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and thus the "p" mode velocity is entirely radial. Consequently, the velocity

may be expressed as

ek

v = j P I (p,_) (45)
pp 2_m

The "p" mode radial Poynting vector S may be written down using (43) and (45):
P

S = --Pv
p 2 pr

i
me XK k II*

82 o o p (46)

The radial Poynting vector is proportional to the square of the magnitude

of the quantity Fp(_), given by

F (¢) = sin { cos _ (47)

P 2 - sin _ cos_X sin _ + n 2 2

in which n = ke/k p _ 10 -3. The quantity Fp(¢) is the radiation pattern

and it is sketched approximately in Figure 3.3.

The striking feature of this radiation pattern is the presence of a

pair of sharp lobes on either side of _ = 0 with a null between them. The

lobes peak at sin * + n z 0 and at the peak, IF I (Xn)-i= = , a quantity
-- p

which is very large compared to the rest of the radiation pattern for which

Fp] is of the order of unity. Although the lobes have a high amplitude,

they are exceedingly narrow, the half-power beamwidth being approximately
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0.6X'n radians. Fhe ratio of power in the lobes to power in the rest of

the radiation pattern is of the order of n-I and thus the contribution of

the lobes to the electroacoustic radiation resistance is negligible. From

a purely mathematical point of view it maybe observed that the lobes occur

as the saddle point passes by the branch point at ¥ = + k . At these points-- e

the influence of the poles at ¥ = _ ¥o is greatest and thus it is possible

to conclude that the sharp sidelobes result from the influence of poles

which are not on the proper Riemann sheet,

The power radiated per unitlength in the electroacoustic space wave

on one side of the conducting sheet (Pp) now may be found using a modified

pattern function which ignores the sharp sidelobes. This function is given

by

F (0) =
P

cos @

X sin qb-j cos ¢
(4_)

Using this function, the radiated power is

P
P

71
÷

I 2
= I Re {Sp } od@

J_z
2

1 1 X
= _ X

4 o i +X (49)

It will 1)e noticed that P is independent of temperature and thus cannot
P

vanish in the zero temperature limit. This is entirely the result of having
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assumedan infinitesimal slot; the choice of a finite slot would provide the

correct limiting behavior but would still give (49) as an approximation for

a slot width small comparedto a Debye length.

For the electromagnetic mode, the magnetic field integral (30) becomes

_c K

= o o j(p,_)
Hz 2_

(50)

in which I
k 2 k 2 sin 2
p e ¢ ke cos _ _ _JkeP+ j

J(P,¢) = ,_k-_ e
2 sin 2 cos_ _/k 2 k 2 2_

(I - Ko) k e _ + ke V p e sin

e

At the saddle point, the direction of the electric field strength

as given by (34) is

x ¥ - yB e = (x sin _ - y cos _) ke

\

_k
e

(51)

Thus the electric field strength may be expressed as

k

E e
e = 2"T J(P,¢)

¢

(52)

The radial "e" mode Poynting vector now may be written down using (50) and

(52) :
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i
S =-- E H*

e 2 e 0 z

.,EKk
O 0 e

- J J* (53}

The radial Poynting vector is proportional to the square of the magnitude of

the quantity Fe(O), given by

F {0) =
e

2 2 'i - n sin ) cos

Xnsin 2 _ + cos _ i - n 2 sin 2

(54)

The radiation pattern IFe{O) l is very nearly equal to unity for all values of

_ except very close to _ = _ . At _ = _ , the finite temperature of the

plasma causes Fe to drop to zero as sketched approximately in Figure 3.3.

This means that far from the slot the "e" mode field is zero on the conducting

surface and thus there are no "e" mode currents flowing in the conductor.

Since the null at _ = _ _ is very narrow, it can be ignored in computing

the electromagnetic power per unit length radiated on one side of the con-

ducting plane. This power is given by

P
e

7 e {Se} pdO
i
2

1
= ¥ _O_o(i - x) (5s)
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3.3.2 The Surface Wave

As shown by Seshadri (1964), a surface wave arises from the residue of

the pole at ¥ = ¥s" From the work of Langelier (1964) it is clear that

this residue must be included in the far field computation at any point

Close to the conducting plane. Since the surface wave problem has already

beenstudied by Seshadri, the treatment here will be brief.

For positive values of y it is clear from Figure 3.2 that closure of

the path of integration must be in the lower half plane, encircling the

pole at T = Ys" All the field integrals may be evaluated using the Cauchy

integral theorem and the evaluation may be carried out under lossy con-

ditions without undue complication; however, only the lossless case will be

The significant field quantities are as follows (withconsidered here.

M = 1 - ×2):

X -k M-I/2(Xx + jy)

P = NeK ° _ e p
(56)

k
k M-I/2(Xx + jy)

e X P ev - P

py _m

(57)

X2 k 1/2e p -k M- (x + j y)
= e p

Vey m M

(58)

X2 -k M-1/2(x + jy)
= K -- e pHz M

(59)

k X2
-k M-i/2(x + jy)

E =__2.___ e p

ex M

(_0)
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k X3
-k M-I/2(Xx + jy)

E -'-_P- e p
Px M

(61)

In contrast to the space waves, the surface wave does not break up into

independent "p" and "e" modes. Thus the Poynting vector in the y direction

for the surface wave is

1 I * + E H *+ E II *I

Ss = _ LP Vpy* + P v e Px z e z Jy x

(62)

Integration of the Poynting vector overall values of x from zero to infinity

gives an expression for the total power per unit length in the surface wave

on one side of the conducting sheet:

w¢ X2
O

s 2 I + X
(63)

Attention must be drawn to the fact that the surface wave propagates at

all frequencies. Furthermore, the propagation constant is of the same

order of magnitude as the "p" mode space wave propagation constant. Thus

the surface wave has a very slow phase velocity and a very short wavelength.

The inclusion of collisions reveals that the surface wave and both tile

space waves have roughly the same attenuation per wavelength but because of

their very short wavelength, the surface wave and the "p" mode space wave

have an attenuation per unit length which is very great compared to that

of an electromagnetic space wave. For example, at X = 4, T = 300°K and

i in a hundredth
Z = .02, the surface wave is attenuated by a factor of

of a free space wavelength.
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_.4 Discussion of the Results

The three expressions for radiated power are (49), (55) and (o3_ which

are plotted as functions of X in Figure 3.4. For all values of X above 0.6,

the surface wave provides the principal mechanism for carrying power away

from the slot. Thus for the idealized problem discussed here, the surface

wave would contribute very markedly to the input conductance of the slot.

Since practical antennas are necessarily finite in size, the surface

wave would be reflected from the ends of the antenna structure and thus

could not contribute to a net power outflow, at least in the lossless case.

IIowever, with collisional losses included, in most cases of interest the

surface wave would be greatly attenuated before reaching the end of the

antenna. Thus the surface wave power radiated on an infinite structure

can be used to estimate the surface wave power lost on a finite structure.

The "p" mode space wave carries little power compared to the other

two modes. This wave does have the very interesting feature of a pair of

very sharp sidelobes, however. Although these sidelobes make a negligible

contribution to the radiation conductance, it may still be possible to

detect them experimentally by a very careful field measurement.

The rigid boundary condition applied at the metal surface is a very

crude representation for the ion sheath, an electron-depleted region which

usually is several Debye lengths thick. The surface wave analysis as

presented here is valid only when the sheath thickness is small compared

to the penetration height of the surface waves above the conducting plane.

From equations (56) to (61) it is clear that there are two penetration
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heights, Le (associated with the electromagnetic part of the field) and Lp

(associated with the electroacoustic part). These penetration heights are

plotted in Figure 3.5 from which it is clear that the surface wave analysis

tends to be valid only in the vicinity of X = 1 and then only for sheath

thicknesses between one and two Debye lengths (for sheath thicknesses less

than _D' surface absorption would render the analysis invalid). For a

sheath thickness of 2 _, the range of validity would be .75 < X < 3.0.

The results of the analysis lead to some suggestions regarding the

current distribution on an antenna immersed in a plasma. As already observed,

the surface wave with its very short wavelength can be strongly excited

and since this wave has a tangential magnetic field, a surface current must

be associated with it. On the other hand, the electromagnetic space wave

amplitude goes to zero close to the conducting plane. These observations

lead to the suggestion that antenna current distributions could have an

appreciable surface wave (short wavelength) component.
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4. IONCOLLECTIONBYA SPHERICALDC PROBEAT HIGHPRESSURES

4.1 Introduction

This report is concerned with the direct measurement of positive ion

densities in the ionosphere within the altitude range of 50 to 90 km. The

measurement technique to be studied involves a negatively biased spherical

probe projecting from the side of a rocket. If the magnitude of the probe

voltage is high enough with respect to the rocket body, only positively

charged ions are attracted to the probe; the electrons and negative ions

are repelled and do not contribute directly to the probe current.

The probe current is a complicated function of the ion species,

density and temperature and, furthermore, the current is influenced by such

factors as rocket velocity and photoemission. The present objective is to

deduce the ion density from the measured probe current using theory applicable

to a stationary probe. Such a procedure requires an estimate of ion species

and temperature together with the minimization of photoemission and rocket

velocity effects. The latter effects are difficult to deal with, but it

is expected that a high probe voltage will reduce velocity effects by giving

the ions terminal velocities appreciably greater than the rocket velocity.

Photoemission, of course, depends on the presence of sunlight and thus it

should have no effect on the pre-sunrise and post-sunset rocket firings being

carried out in the IQSY program.

In the altitude range of interest, the air pressure is high enough to

cause the ions to make many collisions with molecules while being attracted

to the probe. Under these conditions, the drift velocity of v of the ions is

a function of the electric field strength E. In the noble gases v _ E if E is

EI/2small and v _ if E is large; the transition is in the vicinity of
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v y 105 cm/sec and E/P° = 50 volt/cm-mm H where P is the reduced pressureg o
273 P

given by T In the atmospheric gases, the high-field proportionality

, E0"6 +is different being v for N2 ions in N2 (McDaniel, 1964). The pro-

portionalities distussed above all have the form

v = _E 8

= n(E) _
o

a = n/Po 8 Since 8 may lie anywhere between 0.5 and 1.0, it isin which

clearly advisable for theoretical studies to be carried out for an arbitrary

value of 8.

An ion-collection theory for cylindrical probes with B = i has been

derived by Schulz and Brown (1955) and verified experimentally in the labora-

tory by comparison with microwave cavity measurements. A similar probe

theory with B = 1/2 has been derived by Aono, et al. (1962) and used to

deduce ion densities in the ionosphere. These theories take space charge

into account and postulate a well-defined boundary separating the ambient

plasma and the ion sheath. The ion sheath is assumed to contain only ions

(positive ones) and these ions enter the sheath region with a current density

taken to be the same as the random ion current density in an infinite uniform

plasma. Such a theoretical approach leaves much to be desired, especially

because it ignores diffusion and postulates a well-defined sheath-plasma

interface. On the other hand, this approach does yield a relatively simple

solution, some aspects of which have been verified experimentally. Con-

sequently, the assumptions outlined above will be used in this report, but

the value of _ will be left arbitrary.
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4.2 A General Spherical Probe Theory

The relationship between ion drift velocity and electric field dis-

cussed in the introduction may be expressed as a relation between inward

current density J and potential V:

dV B

J : ne _(_r )
(1)

IIere e is the ionic charge magnitude (assuming singly charged ions) and n

is the ion density which is a function of the radius r within the ion sheath.

It is assumed that the total current i is constant in the sheath; thus the

current density is given by

i
J =

2
4_r

The charge density now may be expressed as

(2)

i
p = ne = (3)

4 Trr2 dV

The basic quantities defined above are related by Poisson's equation

which expresses mathematically the interaction between the ion space charge and

the ion drift velocity due to a potential gradient. Poisson's equation in

rationalized MKS units may be expressed in spherical coordinates and manipulated

as follows:
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V2 V - 0

g
(4)

1 d (r 2 dV
2 dr d-_ )

r

i
(s)

dV $ dV
+ 2r (-.-:-'_

dr 4_g_
(6)

At this point it should be Noted that

d [ dV i + 8; 8 d2Vd-_ [_'r) = (I + _) (_-_Vr) dr 2
(7)

Substitution into PoissonVs equation yields

2r d dV I + 8

J dV+ 2r (_r)
-i

(8)

It is convenient to introduce the definition

1+8
dV-

w: (9)

which permits Poisson,s equation to be expressed as

2 dW + 2(1 + 8) r W :
d-_ (10)
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The next step is to express the left hand side of the above equation as

an exact differential. Note that, in general,

d (rmw) = rm dW m - 1
d_ _+ m r W

m - q dW m - q - 1 1= rq r d-_-+ m r W (il)

Matching the quantity in square brackets with the left hand side of (i0),

we find that

m = 2(1 + B), m - q - 1 = I, q = m - 2 = 28

Consequently (i0) becomes

(12)

d [r2(i + B)W7 _ (i + 8) i
dr L J , 4 _s_

Having been simplified as much as possible, the differential equation

is now ready for integration which gives

(i3)

2(i + B)W = . (i + 8) i (ri + 28 + C)
r (I + 2B) 4_¢a

(i4)

The first boundary condition is that the potential gradient be zero at the _

sheath edge. That is,

W= 0 at r= a (is)
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which permits evaluation of the arbitrary constant.

1+28
C = - a (16)

Equation (14) now may be written

W = i+2 i]i (I + B) 1 ( _ .
4_E_ (1 + 28) r

(17)

If the radial coordinate is normalized by writing r : ax, (17) becomes

in which B =

1
i a 8 (i +g_)|

4_ (i + 2"_ 7 ]

dV B (I - x I + 2B)
dx 2

X

1

1 + 8

(18)

Integration with respect to x and application of the second boundary

condition

V = 0 at x = 1 (19)

yields an integral expression for the potential at any point x within the

sheath.

1

xi i+2_ i+_-
V = - B (I - u ) du (20)

2
U

Let the conditions at the probe surface be given by V : - V
O' X = XO_
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r = r . Here V may be interpreted as the magnitude of the negative
O O

voltage applied to the probe (with respect to the plasma). Thus (20) may

be expressed as

1

_x I i + 1 + B

= B (1 - u 2B) du (21)

Vo u 2

O

This integral may be evaluated exactly only for certain values of B and

for some of these the expression contains elliptic integrals. However,

inspection of (21) reveals that for small values Xo, the value of the

-2
integral will be dominated by the u factor in the integrand. A small xo

means that the probe radius r is small compared to the sheath radius "a".
O

-2
Either an integration of u or integration of (21) by parts will separate

out the dominant term for small x . The latter procedure yields
o

2% 20 - 1
V ° (i - x ° 1 + B u

-- _

B x ° 1 + 1 +-----B

(i u I + 2B)

O

du (22)

As x ÷ 0 the integral remains finite for 1/2 < B < i.
O -- --

(22) approaches

Thus in the limit,

V B
0 X

0

(23)

Equations (21) and (23) do not constitute voltage-current relations

because they contain a third unknown, the sheath radius a. This problem
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can be eliminated by assuming that the current-density, at the sheath edge

is equal to the random ion current densityJ r in theplasma. Thus

ffT-"i
=J = Ne ll_

4/[a2 r VZ M
(24)

in which N, M and T are respectively the number density, mass and temperature

of the ions. Substitution of (24) into (23) yields the voltage-current

relation

1

1 F- 1 + g .
Vo = i i + 2B 4_e_ (I + 2B)L

ro(4_Jr)2 1 + 8

3+28

I+B
(25)

It is worth noting that the shape of the voltage-current curve depends on

8 alone.

A common ionospheric probing technique involves deduction of the ion

density from the probe current for a fixed voltage. If the field-velocity

dependence is expressed as

E B
v:'T( F )

0

(26)

then

(27)

where Po is the "reduced pressure" 273 P/T, P being the measured gas

pressure and T the temperature in °K. Making use of (27) one may express
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the ion density as

2_

V_-7_-p1 + 2_ I4 C 81 1 + 28

N = o (i + 8) i (28)

,_ r_c_ (1 + 2B) 1 +
4_re (roV o)

1+ 2B
3+28

The quantities B and_ may be deduced from laboratory experiments (Brown, 1959;

McDaniel, 1964). The potential V is the probe-to-plasma potential; it is
o

given by the applied voltage reduced by the estimated potential difference

across the ion sheath surrounding the reference electrode. The quantities T,

M and Po must also be estimated in order to relate the ion density to the

measured current.

4.3 Measurements in the Ionosphere

4.3,I Collisionless Theory

Th_ theory developed so far has been concerned with ion motion

dominated by collisions. In other words, the ambient gas pressure was

considered to be high enough so that an ion would undergo many collisions

while traversing the sheath region around the probe. On the other hand,

for very low pressures there exists a body of spherical probe theory which

has been discussed at length by many authors, including Boggess (1959)

whose work will be summarized here. If the sheath is very large (a/r ° >> I)

and if a large negative potential (-Vo) is applied to the probe, then kinetic

theory gives the probe current as

eV

i = A Jr(l + . o] (29)K[ "
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2
in which A = probe area = 4_r

O

J = random ion current density = Ne _ k Tr 2-_ "

The above equation gives the voltage-current curve but does not give any

idea of the size of the probe's region of influence (or ion sheath). The

sheath size can be estlmated by calling upon the theory of the spherical

space-charge-limited diode in which the outer electrode is the particle

emitter and the inner electrode the particle collector. The sheath radius

"a" is identified with the radius of the outer electrode and the following

voltage-current relation deduced:

eV 3/2

r 9 (--) (kT) 12
O -C_

(30)

The symbol XD indicates the [lebye-!iuckel shielding length whose variation

with temperature and charged-particle density is d'_splayed in Figure 4.1.

Tile quantity (-_') is a function of a/r ° and is shown in Figure 4.2. The
eV

o
elimination of i from (29) and (3.0) with the approximation _ >> 1 gives

eV 1/2

-a'- 9 ( ) (
0

(31)

Given density, temperature and probe voltage one may deduce the sheath

radius with the help of Figure 4.2.

4.3.2 Validity of the Theory

The collisionless theory summarized above is called "orbital-motion-

limited" (as opposed to "sheath-area-limited" for thin sheaths). The
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orbital-motion-limited theory is accurate to about one percent provided

T/nr o2 _> 10-3 and accurate to about ten percent provided T/Nro2 _> 3 x 10-4

(in MKS units). These criteria are plotted in Figure 4.3 for a 1 cm radius

probe in the lower ionosphere.

The collisional theory discussed in the previous chapter depends for its

validity on a mean free path which is short compared to the radius of in-

fluence of the probe. In particular, a criterion of "ten collisions in

the sheath" has been employed by Schultz and Brown (1955). For a large

value of a/r ° and a mean free path represented by L, this criterion may be

stated as a = i0 L. For values of "a" derived from (31) and values of L

taken from the U. S. Standard Atmosphere (1962) the criterion is plotted in

Figure 4.3. Also included are plots of two other criteria, a m L and

XD = L. These three collision criteria serve to indicate the transition

region from collisional to collisionless ion motion with reference to a

particular probe radius and voltage (i cm and 22 volts in this case).

4.3.3 Iligh Pressure Velocity Dependence

As stated in the previous chapter, the dependence of ion drift

velocity on electric field strength may be expressed as

(32)

The number S for atmospheric gases is approximately 0.6 for high E/P °

and 1.0 for low E/P o. The transi£ion between low-field and high-field

conditions is at E/P o_ 5 x 103 volts/m. - mm. H . The problem now is
g

to determine the altitude in the ionosphere at which this transition occurs.
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In order to estimate the transition altitude it is necessary to know

approximately the electric field of the probe at a given potential. This

field maybe approximatedby the field of a spherical electrode in free

space (realizing that the electric field strength in a plasmawill be

higher due to the shielding effect). If E is defined as the electric fieldo

strength at the probe surface, then the transition criterion becomes

Eo/P° = 5 x 103 volts/m. - mm.llg. (33)

IfV
O

yields

is the magnitude of the probe potential, then elementary electrostatics

E ----o Vo/ro (34)

Elimination of E from (33) and (34) and inclusion of the probe radius of
O

lO -_ m gives a transition pressure of

P = V /50 mm. llg.
O O

(35)

The relation between pressure and altitude as given in the U. 5. Standard

Atmosphere (1902) permits the transition altitude to be plotted as a function

of probe voltage as shown in Figure 4.4. Since altitudes above 50 k_ are of

interest at present it is clear that high-field theory (6 _ 0.6) is appro-

priate.
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Although high-field conditions prevail close to the probe, there must

be a low-field region farther away from it. An analysis incorporating both

low-field and high-field ion motion has not been carried out due to the

complexity of the problem. However, since conditions close to a probe are

most influential in determining the current, the use of high-field theory

alone should produce a reasonably accurate solution.

4.3.4 Results of Pre-sunrise Rocket Flight 14.144 at Wallo_s Island,

vi ygj ni_

The measured ion current to a spherical probe is shown in Figure 4.5.

The measurements are for ascent and the launch took place at 0300 EST on

July 15, 1964. The ion current was measured at a fixed negative potential of

22.5 volts.

The ion density profile using the high-field collisional theory is shown

in Figure 4._. For this computation, the values B = 0.O and_ = 3.45

+

(MKS units) were obtained from McDaniel (1964). These are values for N 2

+

ions in N 2 and they are probably approximately correct for the NO ions

believed to predominate in the lower ionosphere. This choice of constants

results in the following formula which was used to compute the ion density

profile:

1.046
N 1.08 x 1025

= (_) P i ions/m 3 .
273 .546 1.91

(36)

The criteria plotted in Figure 4.3 indicate that this fo_nula is valid

below about 90 km. It is interesting to note that the positive ion density

between 54 and 89 km is nearly constant at about 40 ions per cc., a density

which is consistent with VLF measurements in the "C-layer" at sunrise
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(Sechrist, 1965). Additional profiles (not shown) were plotted for _ = .5

and B = io0; these yielded ion densities respectively less and greater

(than those shown) by factors of about four. Clearly the predicted ion

density is strongly dependent on the relation between drift velocity and

electric field strength. Also included in Figure 4_6 is a correction factor

derived by Sagalyn and Smiddy (1963); it is not certain at present that this

correction is applicable to the ion density profiles derived from high-field

theory.

Above ii0 km collisionless orbital-motion-theory is applicable and the

current-voltage relation is given in (29). In this case V = 22 volts and
eV o

o
thus k-_--->> i. With this approximation, the ion density is

N = 4.69 x 1016 T/_i ions/m 3 (37)

for N 2 ions and a probe of 1 cm radius. A graph of (37) is shown in Figure

4.6; this profile intersects the one predicted by (36) at 91 km and 97 km.

Both of these intersections are in the range of altitudes in which the ion

motion changes from collisionless motion to collision-dominated motion.

Shown in Figure 4°7 is an electron density profile derived from the

vbltage-current characteristic of a conical probe consisting of a six-inch

section at the top of the rocket nose cone° The profil@ was supplied by

L. G. Smith of GCA Corporation. The difference between the electron density

profile and the zon density profile below 80 km presumably indicates the

presence of negative ions.
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4°3.5 Zero Space Charge Theory

The collision-dominated ion collection theory discussed and applied

up to this point makes use of the experimentally determined variation of ion

velocity wit_ electric field and takes into account the presence of space

charge. In order to estimate the importance of including space charge, one

may attempt to formulate a theory which neglects it. Neglect of space charge

implies that the probe field in a plasma is the same as in free space. That

is,

v= Q
4_sr

E= Q
2

4_er

in which Q is the charge on the probe. The requirement of constant total

current "i" at all radii produces the relation

2
i = nev 4_r

from which arises the restriction

-2
nv_r

in which n is the ion density. Space charge neutrality requires that the

positive ion density n be cancelled out by a background of electrons and

negative ions. Frequently it is assumed that the charged particle density

is unaffected by the presence of the probe; this would permit the replace-

ment of n by N which is a constant.

restriction

This assumption in turn imposes the

(38)

(39)

(40)

(41)

-2
v _ r (42)
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or

V _ E

which immediately rules out high-field ion motion. Thus, :ero space charge

theory cannot be applied to the rocket probe except possibly in the vicinity

of 50 km. With B = i, (32) permits the derivation of the following current-

voltage relation

4_ Ne n r

i = o V
P o
0

Equation (44) displays a linear relation between current and voltage and

provides a means of computing ion density. The ion density computed using

the above formula is 5 x 103 ions/cc at 54 km which is more than two orders

of magnitude greater than either the collisional or collisionless result

(both approximately 40 ions/cc). It must be concluded that space charge is

important even under low-field conditions.

4.4 Probe Measurements in the Laboratory

Testing the high-pressure probe theory in the laboratory is difficult

due to the requirement that the sheath radius be much larger than the

probe radius. For e 1/8" diameter probe this means that the charged-

particle density in the laboratory discharge tube must be in the vicinity

of 106 to 107 per cc. The range of densities which can be obtained easily

in steady state laboratory discharges is about 109 to i0 I0 per cc with a

range from 108 to i0 II per cc available with some difficulty. The dif-

ficulties referred to are discharge current drift and plasma non-uniformity

at low densities and overheating at high densities.

(43)

(44)
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Despite the difficulty in working at low charged-particle densities

an experiment was carried out using a 1/8" diameter spherical probe in a

brush cathode discharge tube which has been described in detail by

Kostelnicek (1965). Helium gas at l mmpressure wasused, a combination

which produced an electron density of 108 per cc with a discharge current

of 1 ma. Probe voltage-current curves were taken at four values of dis-

charge current in the range 20 _a to i00 _a as shownin Figures 4.8 and

4.9. The electron-collection curves in Figure 4.8 are sufficiently unlike

the classical Langmuirprobe characteristic that they cannot be used to

deduceelectron temperature and density, llowever, the ion-collection

curves in Figure 4.9 becomestraight lines in the log-log graph, indicating

that the current is proportional to the voltage raised to somepowergiven

by the slope of the line. This is exactly the behavior predicted by (25)

_I

and the slope on the log-log graph should be 2(i + B) (3 + 2B) ' Under

high-field conditions in helium, _ = i/2 and the predicted slope is .75.

The curves have slopes which increase with decreasing discharge current, a

slope of .75 being reached at the lowest discharge current, 20 _a.

The expected electron density at a discharge current of 20 _a is

2bout 2 x 106 per cc, based on the assumption that the electron density is

proportional to the discharge current and extrapolating from lO8 per cc at

1 ma. llowever, the ion density can be calculated much more precisely from

the probe current using (28). Assuming an ion temperature of 300°K (which

is probably too low) and deducing _ = 4.0 _IKS units from Brown (1959), the

calculated ion density is 3.2 x 106 per cc which is close to the estimated

value of 2 x 106 per cc. The sheath radius calculated from (24) is 7.64 mm
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and the probe radius is 1.59 ram, giving a/r = 4.8, a value whici_ satisfies
o

fairly well the condition a/r ° >> i. An equally important condition is that

there nmst be many collisions in the sheath. At a pressure of I mm ;Ig, the

mean free path in helium is 0.5 mm and in the above example the sheath thick-

ness is 5 mm. This indicated ten collisions in the sheath and thus the

collision condition is satisfied. The above calculations suggest that the

spherical probe theory derived in this report can be very useful in the

diagnosis of low-density plasmas. Furthermore, it has been shown that the

brush cathode laboratory discharge tube can be used to obtain charged-particle

densities as low as 106 per cc.

The laboratory gas discharge apparatus is shown in Figure 4.1O. The

tungsten spikes forming the brush cathode are clearly visible through the

glass which has been darkened bv metal sputtered off the cathode. l'ile t_vo

small spherical probes may be seen at the other end of the tube. They are

surrounded by the finned anode, the fins being necessary to provide enough

anode area for Langmuir probe measurements. Figure 4.11 shows the same

discharge tube in operation.
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5. FUTURE IONOSPHERIC PROBE EXPERIMENTS

5.1 Introduction

Both DC and RF probes have been used on rockets and satellites for

several years but in many cases the experimental results have been very

difficult to interpret. For instance, in the case of RF impedance probes,

the experimental results have required corrections for the ion sheath and

electroacoustic radiation and, furthermore, there has been much inconclusive

discussion about the effect of DC bias. In addition_, early resonance probe

experiments produced puzzling results such as the complete disappearance of

the rectified current peak. It would appear that many of these difficulties

arose because the experiments were designed primarily to measure geophysical

quantities rather than being designed to study the probe-plasma interaction

itself. Thus in retrospect one may conclude that programs of laboratory

and ionospheric probe studies should have preceded geophysical measurements.

At the present time it is clearly desirable to carry out an experimental

study designed specifically to fill in some of the "gaps" in the understanding

of probe behavior. Laboratory plasma experiments offer the distinct advantage

of accessibility but for some experiments, the ionospheric plasma is definitely

preferable. For instance, RF resonance effects are easy to recognize in the

ionosphere because of the low value of _---,the ratio of the collision fre-
mN

quency to the plasma frequency. In laboratory plasmas it is very difficult

to obtain a value of v---as low as 10-2 due to the difficulty in maintaining

mN

a low-pressure discharge. However, in the ionosphere _---_10 -2 at an altitude

_N

of i00 km and _----m10-4 at 300 km. Thus at the higher altitudes (in the F-
mN

region), the ionosphere is well suited for studies of plasma resonances and

instabilities.
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An important factor in probe studies is the uniformity of the plasma

adjacent to the probe when it is biased to space potential; it is this bias

level at which the electron density is determined using +DCprobe techniques.

if n is the electron density at the surface of a spherical probe of radiusR,
P

N is the ambient electron density and _ is the electron mean free path, then

according to Wasserstromet ai.(1965),

n

p _ i

N 2(1 + R)

It is evidently necessary to require the condition R/X << 1 in order to

minimize plasma non-uniformity. In laboratory plasmas, typical maximum values

of _ are 1 cm in neon and 1 mm in helium while in the ionosphere _ _i m at

I00 km and X_ i00 m at 300 km. Thus the condition R/k << 1 would be easier

to achieve in the ionosphere. Of course this simple picture neglects entirely

the Earth's magnetic field.

The influence of the Earth's magnetic field can be estimated by noting

that the electron gyroradius r varies from 0.6 cm at i00 km to 3 cm at 300 km.
g

Thus r is likely to be of the same order of magnitude as the dimensions of
g

the probe (such as R, the spherical probe radius). Much more important than

rg/R, however, is the ratio of rg to the Debye length XD, large values of

rg/_ D indicating that the magnetic field will have little effect on a DC

probe characteristic. The ratio rg/k D varies from 0.5 at i00 km to 15 at

300 km, a range which goes all the way from a strong to a weak magnetic field

effect. As far as RF probes are concerned, the influence of the magnetic
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field is very roughly proportional to _H/_N, the ratio of the gyrofrequency

to the plasma frequency. At i00 km _H/_N_ I, indicating a strong effect,

while at 300 km _H/mN_ 0.i, indicating a weak effect. These examples all

lead to the conclusion that DC and RF probes would experience little mag-

netic field effect near the F-region peak in electron density but that this

effect could becomestrong at lower or higher altitudes.

In recent years it has been showntheoretically that the compressibility

of the electron gas can influence the behavior of an RF probe. It has been

predicted that this compressibility will cause the radiation of electro-

acoustic waves and will change the probe impedance appreciably. The various

theories all have one point in common,that compressibility effects are

strong if the probe dimensions (radii of curvature, gap width, etc.) are

comparable to a Debye length and weak if the dimensions are muchgreater

than _D" In the ionosphere, _D varies from 1.2 cm at i00 km to 2 mmat

300 km so that compressibility effects may be madeeither large or small

according to the design of the probe and the choice of altitude.

5.2 Experimental TechniQues

5.2.1 Langmuir Probe

Langmuir or DC probe experiments must be regarded as fundamental in

a rocket program because these experiments lead to values of space potential,

electron temperature and electron density; thus the first objective must be

to obtain a good Langmuir probe current-voltage curve° Unfortunately, this

is not easy to do as many laboratory and ionospheric experiments have demon-

strated. Recent experiments in the Aeronomy Laboratory have brought to

prominence the necessity for clean probe surfaces. The required cleanliness
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was achieved only after a brief period of ion bombardmentin the pure,

10W-pressuregas atmosphere to be used in the experiment. This cleaning

procedure appreciably reduced the apparent electron temperature and

completely removedirregularities which had madethe current-voltage

curve extremely difficult to interpret. In a rocket, cleaning could be

accomplished by applying several hundred volts (both positive and negative)

for a few seconds between the probe and the rocket body or between the two

halves of an electrically "split" rocket body so that all metal surfaces

are exposed to the cleaning process. At present it is not knownif the ion

density in the ionosphere would be sufficient for cleaning or if additional

ionization would be necessary; probably the best experimental approach would

be to use as high a voltage as possible in series with a current-limiting

resistor. The additional ionization caused by the cleaning process might

temporarily degrade or even interrupt telemetry transmission so that pre-

parations would have to be made for such an eventuality. A good experi-

mental sequencewould consist of two or three cleaning operations interspersed

between DC probe curves. Careful sealing of the rocket body and motor

casing would be necessary to avoid the evolution of contaminant gases.

A further requirement for a good DC probe characteristic is a large

ratio of reference electrode area to probe area. The larger this ratio

is, the smaller is the change in voltage between the plasma and the reference

electrode during a probe experiment. This voltage change AV can be pre-

dicted approximately from a typical current-voltage curve as shown in the

accompanyingdiagram.
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I

I,!
AI - I (Probe area)

m (Rocket Area)

Eiere, the rocket is taken

to be the reference electrode.

v

From laboratory experiments, if the maximum allowable AV were 0.1 volt,

then the required area ratio would be (Reference electrode area)/(Probe area)

i000.

S.2.2 Transient Response

One of the most important rocket experiments involves the measurement

of the time required for a DC probe to respond to a change in applied

voltage.

In general, two response times are of interest, the "overall" response

time required for a complete probe curve and the "incremental" response

time applicable at any point on the curve. Three suggested waveshapes for

the applied voltage are sketched below.

V
i (a) cb) (c)

_ff __r -_r--
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In (a), an overall response time would be the quantity measured, while in

(b) it would be an incremental response time. Waveform (c) would serve to

reveal hysteresis effects. Expected response times Would be at least as

great as one period at the ion plasma frequency (say one to ten milliseconds)•

Diffusion effects might extend this time considerably and thus laboratory

measurements of response time would be advisable prior to the design of

rocket instrumentation. In addition, the use of a probe current amplifier

with a logarithmic response would permit reading time constant, electron

density and electron temperature directly from the telemetry records.

5.2.3 Impedance Probe

A considerable body of theoretical work on probe impedance is available

at present and ionospheric experiments are needed in order to check the

theory. A well-designed impedance experiment would involve swept-frequency

impedance (admittance) measurements carried out at several pre-set bias

voltages• A useful F-region frequency range would be from half the electron

gyrofrequency to twice the electron plasma frequency• In impedance measure-

ments it is important to keep the RF voltage low; a satisfactory peak voltage

would be about 1/2 kT• -- or .05 volts at 1200°K and a continuous monitoring
e

of the rectified current to the probe would reveal any non-linear tendencies•

The unavoidable variations in rocket attitude would provide a continuous

change in probe orientation with respect to the magnetic field• If probe

dimensions were kept small (comparable to XD ), it would be possible to

observe impedance effects caused by the compressibility of the electron

gas; the physical existence of these effects is not yet well established.
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Impedanceeffects to be observed include resonances of the plasma

mediumsuch as the commonmagneto-ionic theory resonances and also the

cyclotron-harmonic responses as observed with the Alouette satellite.

Someresonances occur at frequencies which are dependent on the size of

the ion sheath (i.e. the series resonance which _an occur between the

capacitive sheath and an inductive plasma); these resonances can be

identified by the dependenceof the resonant frequency on probe bias.

In addition to resonances, one might look for the high losses associated

with "hyperbolic" conditions (Balmain, 1964; Hodges, 1964). This

phenomenonwould appear as a bias-independent "jump" in the real part

of the probe impedance or admittance.

5.2.4 Resonance Probe (Resonance Rectification)

This resonance experiment is similar to the impedance experiment al-

ready described. The only requirement would be the increase in RF voltage

to a peak value between 3 kTand 4 k--_T(as has been determined by laboratory
e e

experiment); in a rocket, two or three different RF levels might be employed.

In this experiment it is important that the RF voltage at the probe be kept

constant during the frequency sweep. The optimum DC bias point is at the

ion saturation "knee" in the Langmuir probe curve (Kostelnicek, 1965).

5°2.5 Probe Configurations

The shape of a probe determines how the measured quantities will vary

with rocket attitude° Measurements on a small spherical probe (i to 5 cm

radius) mounted on the nose of the rocket should be nearly independent of

attitude. A cylindrical dipole configuration (2 to 4 m long) would be a

good choice for studying the influence of the Earth's magnetic field. A
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segmentedsphere would be helpful in studies of photoemission and flow

effects. Photoemission might also be studied by the use of a small

spherical probe mounted a short distance from the side of the rocket--

the presence of photoemission would cause a change in the measured

quantity as the probe passes from the sunlight into the shadow of the

rocket.

5.3 Experimental Program

The first experiments should be carried out near the F-region peak

in electron density since the magnetic field effects are secondary there

and the electron density can be determined both from "bottomside" and

"topside" sounding techniques. Later experiments designed to explore

magnetic field effects could be carried out at lower or higher altitudes.

At the lower altitudes, "heating" radio waves might be transmitted from

the ground and the rocket equipment employed to look for wave-plasma

interactions. Another extension of the work would involve measurement of

mutual impedance between two antennas or measurement of the interaction

between pairs of experiments carried on the same vehicle.
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